Elementary knowledge of hard disk - Connection synopsis of hard disk

Hard disk interfaces

Hard disks also come in several flavors such as IDE (actually ATA), SCSI and SATA, as do optical drives. ATA is the most common interface used today. SCSI disks can usually be found on servers.

IDE
Integrated Drive Electronics, more commonly called by its acronym IDE, is an interface for hard drives. IDE is a marketing term; the real standard is called ATA.

EIDE (Enhanced IDE) or ATA-2 was later developed and increased transfer speed, added 32-bit transactions and DMA support.

ATA
ATA stands for Advanced Technology Attachment. The ATA -term is commonly used interchangeably with IDE. The older and more common paraller ATA (P-ATA) is currently being replaced by serial ATA (SATA).

Most PCs have two IDE controllers on the motherboard. One IDE controller can support two devices, so four storage devices is usually the maximum. Paraller ATA interface uses ribbon cables with 40 -pin connectors to connect the hard drives to the motherboard. The cable has usually three connectors. Of these one is connected to the motherboard and the rest two are left for hard drives. If two hard drives are connected to the same controller, one must be defined as master and the other one as slave. This is done with jumpers.

ATA-2 is the real standard for what is widely known as EIDE. ATA-2 introduced higher speed data transfer modes: PIO Modes 3 and 4 plus Multiword DMA Mode 1 and 2. These modes allow the ATA interface to run data transfers up to about 16MB/second.

SATA
Serial ATA, also known as SATA or S-ATA, is a bus used to communicate between the CPU and internal storage devices such as hard drives and optical drives. It is designed to eventually replace the ATA (also known as IDE) bus. Traditional ATA is beginning to be referred to as Parrellel ATA, P-ATA, or PATA to avoid confusion.

The main difference between SATA and PATA is in the cabling. SATA does away with the master/slave relationship of PATA (hence the difference in names), as well as PATA's ungainly ribbon cables. Instead, SATA has much slimmer and easier to manage cables, which will enable better airflow through cases. The connectors are keyed, preventing connectors from being plugged upside down. Truly native SATA drives will have different power connectors also.

A third advantage of SATA is hot plugging.

Currently, SATA has a transfer rate of 150 MB/s, which is only 17 MB/s more than standard PATA. However, with the introduction of SATA II, this is expected to go up to 300 MB/s, with 600 MB/s being released sometime around 2007. The faster bus isn't expected to affect performance in the short term, since hard drive performance is usually bottlenecked by the moving parts of the drive.

During the transitional period before true native SATA drives are released, most SATA drives actually have onboard PATA controllers, which connect to SATA by a bridge. This generally causes a 30-50% performance drop. Also, PATA power connectors are still being used.

DMA
DMA (Direct Memory Access) is a function of the memory bus in the computer that lets connected devices like hard disks transfer data to the memory without the intervention of the CPU, thus speeding up the transfer. This is superior to the way PIO works.

There are two distinct types of direct memory access, DMA and bus mastering DMA. The plain DMA relies on the DMA controller on the motherboard to grab the system bus and transfer the data. In bus mastering DMA all this is done by the logic on the interface card itself. Bus mastering allows the hard disk and memory to work without relying on the old DMA controller built into the system, or needing any support from the CPU.

USB
USB (Universal Serial Bus) is a hardware bus using a serial protocol used by many different hardware devices and supported in most computers/mainboards. Originally developed by Compaq, Intel, NEC and Microsoft. It allows many devices to be connected to the bus at the same time, the theoretical maximum is 127 devices. The maximum data transfer bandwidth is about 12Mbit/s (USB2.0 supports 480 Mbit/sec).

Firewire is a less known alternative to USB that (at its time) was better than USB for media related tasks. As of USB2 there have been significant increases, specifically more bandwidth.

SCSI
SCSI - Small Computer System Interface. Pronounced "scuzzy". It's a specification for a hardware interface for connecting devices such as hard disks and scanners to a computer.

Most PCs have an ATA (IDE) bus instead of SCSI for connecting internal hard disks. SCSI is seen more often in servers, as it tends to be faster and more reliable (though more expensive). Another advantage of SCSI controller is that it requires only one IRQ and can handle usually at least 7 devices whereas ATA can handle only 2.

Typically, you put a SCSI card in your computer, and then connect internal hard disks with a ribbon cable to some connector on the card. Also, the card will have an external connector which you might also be using simultaneously.

Fiber Channel
Fiber Channel Hard Disk Drive
The Enterprise Virtual Array supports any combination of five different Fiber Channel Hard Disk Drives (HDD) with multiple capacity points and two different rotational speeds. Three drive capacity points are supported at 36 GB, 72 GB, and 146 GB. Two rotational speeds are supported at 10,000 RPM and 15,000 RPM.

The following individual drive capacity/rotational speed combinations are available:
146GB 10,000 RPM Fibre Channel HDD
72GB 15,000 RPM Fibre Channel HDD
72GB 10,000 RPM Fibre Channel HDD
36GB 15,000 RPM Fibre Channel HDD
36GB 10,000 RPM Fibre Channel HDD

Five different Fiber Channel HDDs for the Enterprise Virtual Array provides tremendous flexibility to the target customer base by allowing mixing and matching of capacity and performance to application needs. Application areas seen as potential markets include OLTP, ERP, and any other applications requiring large amounts of online storage

IEEE
Also called Firewire. it is a less known alternative to USB that (at its time) was better then USB for media related tasks. As of USB2 there have been significant increases, specifically more bandwidth.